Multiple Rhodium(II)-Rhodium(III) Bond in the Dimer $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ $\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{H}_{\mathbf{2}} \mathrm{O} ; \boldsymbol{X}$-Ray Crystal Structure

By Józef J. Zióekowski,* Monika Moszner, and Tadeusz Glowiak
(Institute of Chemistry, University of Wroctaw, 50-383 Wroctave, Poland)

[^0]investigating different types of metal-metal interactions and for studying the relationship between the electronic configuration of metal ions and the multiplicity of metalmetal bonding. ${ }^{1}$ The structure of these complexes has therefore been the subject of great interest to workers in this field. The $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$ion described recently ${ }^{2-4}$ is, together with the ion $\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CC}_{3} \mathrm{H}_{7}\right)_{4}\right]^{+, 5}$ a good example of this type of complexes having the metal in
different oxidation states. Crystals of the complex $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ were prepared by a method described earlier. ${ }^{4}$
Crystal data: $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{ClO}_{14} \mathrm{Rh}_{2}, M 595 \cdot 5$, triclinic, space group $P \overline{1}, \quad a=8 \cdot 187(2), \quad b=8 \cdot 114(2) . \quad c=16 \cdot 120(3) \AA$, $\alpha=91.85(3), \quad \beta=101.84(3), \gamma=115.17(3)^{\circ}, \quad D_{\mathrm{m}}=2.09$, $D_{\mathrm{c}}=2.10 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2$. Intensities were collected on a Syntex $P 2_{1}$ four-circle diffractometer using graphite monochromated $\mathrm{Cu}-K_{\alpha}$ radiation. The structure was solved by heavy atom methods. Full-matrix least-squares refinement based on 1783 reflections with $F>3 \cdot 92 \sigma(F)$ yielded final R_{1} and R_{2} values of 0.054 and 0.073 , respectively; consideration of all of 1937 reflections gave the values 0.06 and 0.073 , respectively. A perspective view of the molecular structure of the complex is shown in the Figure. \dagger

Figure. The structure of $\left[\mathrm{Rh}\left(\mathrm{O}_{2} \mathrm{CMe}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right.$. Bond lengths are: $\mathrm{Rh}(1)-\mathrm{Rh}(1), 3 \cdot 315(2)$; $\mathrm{Rh}(1)-\mathrm{O}(1), 2 \cdot 014(13)$; $\mathrm{Rh}(1)-\mathrm{O}(2), \quad 2.012(12) ; \mathrm{Rh}(1)-\mathrm{O}(3), \quad 2 \cdot 013(11) ; \mathrm{Rh}(1)-\mathrm{O}(4)$, 2.012(11); Rh(1)-0(9), 2.228(15); $\mathrm{Rh}(2)-\mathrm{Rh}(2), 2 \cdot 318(2) ; \mathrm{Rh}(2)-$ $\mathrm{O}(5), 2.022(12) ; \mathrm{Rh}(2)-\mathrm{O}(6), 2.015(12) ; \mathrm{Rh}(2)-\mathrm{O}(7), 2.021(14)$; $\mathrm{Rh}(2)-\mathrm{O}(8), 2 \cdot 006(15)$; and $\mathrm{Rh}(2)-\mathrm{O}(10), 2 \cdot 216(13) \AA$.

The complex contains binuclear carboxylato-bridged species $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$with a mean $\mathrm{Rh}-\mathrm{Rh}$ distance of $2 \cdot 3165(20) \AA$. The mean $\mathrm{Rh}-\mathrm{O}$ (acetate) bond length is $2 \cdot 014 \AA$, and the $\mathrm{Rh}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ distance is $2 \cdot 222 \AA$. This complex has the shortest Rh-Rh distance known so far, except the $\mathrm{Rh}-\mathrm{Rh}$ distance of $2 \cdot 3855(5) \AA$ in the diamagnetic complex $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ which involves multiple bonding, probably of the order $3 .{ }^{6}$ This suggests that the $\mathrm{Rh}-\mathrm{Rh}$ bond order in the paramagnetic species $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$is higher than 3 .

There are at least three different experimental and theoretical approaches to the problem of $\mathrm{Rh}-\mathrm{Rh}$ bonding in the binuclear carboxylato-bridged complexes. According to Dubicki and Martin ${ }^{7}$ it is a single (σ) bond which can be described by the pattern of orbitals: $e_{u}{ }^{4}(\pi), a_{1 g}{ }^{2}(\sigma)$, $b_{2 g}{ }^{2}(\delta), b_{1 u^{2}}{ }^{2}\left(\delta^{*}\right) . e_{g}{ }^{4}\left(\pi^{*}\right)$. Norman and Kolari ${ }^{8}$ proposed a different $\mathrm{M}-\mathrm{M}$ bonding set of orbitals on the basis of an SCF-SW- X_{α} calculation for the $\mathrm{MoCl}_{8}{ }^{2-}$ ion. Earlier Bennet et al. ${ }^{5}$ had suggested that the complex contains a triple $\mathrm{Rh}-\mathrm{Rh}$ bond arising from the configuration: $a_{1 g}{ }^{2}(\sigma)$, $e_{u}{ }^{4}(\pi), b_{2 g}{ }^{2}(\delta), a_{1 g}{ }^{2}\left(\sigma_{n}\right), a_{2 u}{ }^{2}\left(\sigma_{n}{ }^{\prime}\right), b_{1 u}{ }^{2}\left(\delta^{*}\right)$.

Although all three interpretations are consistent with the closed shell configuration required by the observed diamagnetism of $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\right]$, only the last was supported by experiments showing a very short $\mathrm{Rh}-\mathrm{Rh}$ bond in the diamagnetic complex $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\right]$; this receives further support from our X-ray data for the paramagnetic complex $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$. Therefore the order of the $\mathrm{Rh}^{\mathrm{IL}}-\mathrm{Rh}^{\mathrm{III}}$ bond in $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$species is most probably more than 3 and can be described by the following orbitals: $a_{1 g}{ }^{2}(\sigma), e_{u}{ }^{4}(\pi) b_{2 g}{ }^{2}(\delta) a_{1 g}{ }^{2}\left(\sigma_{n}\right), a_{2}{ }^{2}\left(\sigma_{n}{ }^{\prime}\right), b_{1 u}{ }^{1}\left(\delta^{*}\right)$. Assuming, after Cotton, ${ }^{1,5}$ that $a_{1 g}\left(\sigma_{n}\right)$ and $a_{2 u}\left(\sigma_{n}{ }^{\prime}\right)$ orbitals are essentially non-bonding, and the half-filled antibonding $\mathrm{b}_{1 u}\left(\delta^{*}\right)$ orbital partially nullifies the bonding effect of the $b_{2 g}(\delta)$ orbital, the $\mathrm{Rh}^{\text {II }}-\mathrm{Rh}^{\text {III }}$ bonding set of orbital is given by: $a_{1 g}{ }^{2}(\sigma), e_{u}{ }^{4}(\pi), b_{2 g}{ }^{2}(\delta), b_{1 u}{ }^{1}\left(\delta^{*}\right)$, leading to the bond order of $3 \cdot 5(\sigma, 2 \pi, 0.5 \delta)$.
(Received, 17th Jaunary 1977; Com. 041.)
\dagger The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Rd., Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.
${ }^{1}$ F. A. Cotton, Chem. Soc. Rev., 1975, 4, 27.
${ }^{2}$ C. R. Wilson and H. Taube, Inorg. Chem., 1975, 14, 2276.
${ }^{3}$ R. D. Cannon, D. B. Powell, K. Sarawek, and J. S. Stillmann, J.C.S. Chem. Comm., 1976, 31.
${ }_{5}^{4}$ M. Moszner and J. J. Ziółkowski, Bull. Acad. Polon. Sci., Sér. Sci. chim., 1976, 24, 433.
${ }^{5}$ M. J. Bennett. K. G. Caulton, and F. A. Cotton, Inorg. Chem., 1969, 8, I.
${ }^{6}$ F. A. Cotton, B. G. DeBoer, M. D. LaPrade, J. R. Pipal, and D. A. Ucko, Acta Cryst., 1971, B27, 1664.
${ }^{7}$ L. Dubicki and R. L. Martin, Inorg. Chem., 1970, 9, 673.
${ }^{8}$ J. G. Norman, Jr. and H. J. Kolari, J.C.S.'Chem. Comm., 1974, 303; J. Amer. Chem. Soc., 1975, 97, 33.

[^0]: Summary The crystal and molecular structure of tetra- μ -acetatorhodium(II)-rhodium(III) perchlorate has been determined; the complex contains the bimolecular species $\left[\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$with a very short $\mathrm{Rh}^{\text {II }}-\mathrm{Rh}^{\text {III }}$ distance of $2 \cdot 3165(20) \AA$.

 Binuclear carboxylato-bridged complexes of the type $\mathrm{M}_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4}$ are among the most suitable complexes for

